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Abstract Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained
momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A
physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the
Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced
Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites,
namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate
snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical
weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud
properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the
determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is
accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive
ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is
retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that
adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a
complex integral. The algorithm has been validated against both radar and ground observations of
snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is
operationally generated at the National Oceanic and Atmospheric Administration and can be obtained
from that organization.

1. Introduction

Satellite remote sensing of snowfall is challenging due to the complexity of atmospheric processes involved
and the lack of both the understanding about these processes and the information onmany related variables.
It is more difficult to estimate snowfall than rainfall because more information, such as ice particle shape and
density, is required for developing physically based algorithm and generally unavailable. Consequently, stu-
dies on snowfall retrieval have lagged significantly behind the development of satellite rain rate algorithms
[Ferraro and Marks, 1995; Evans et al., 1995; Bauer and Bennartz, 1998; Weng et al., 2003; Ferraro et al., 2005;
Kummerow et al., 2011]. However, snowfall retrieval from passive microwave (PMW) instruments has been
gaining momentum in recent years. The observations from PMW are uniquely suitable for snowfall detection
and retrieval [Kongoli et al., 2003; Bennartz and Bauer, 2003; Skofronick-Jackson et al., 2004; Noh et al., 2006;
Kim et al., 2008; Liu and Seo, 2013; Skofronick-Jackson et al., 2013; You et al., 2017]. PMW has the ability to
penetrate clouds hence directly bearing the signal of snow particles. High frequencies above 150 GHz, such
as window channels around 160 GHz and water vapor sounding channels around 183 GHz, are particularly
sensitive to the radiance depressing effect of ice scattering. Some land snowfall rate algorithms have been
developed utilizing this property and are briefly reviewed in this section. It is noted that essentially all the
current passive microwave algorithms that retrieve precipitation (rainfall or snowfall) over land rely on the
sensing of ice signature.

Skofronick-Jackson et al. [2004] developed a physically based snowfall rate model using high-frequency PMW
observations from the Advanced Microwave Sounding Unit-B (AMSU-B) radiometer. They generated snow,
temperature, and relative humidity profiles using the Mesoscale Model cloud model and input the modeled
profiles and estimated surface emissivity to a radiative transfer model (RTM) to simulate AMSU-B brightness
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temperatures (Tbs) at five frequencies. In the RTM, snow particles were assumed to be a concatenation of
equivalent ice spheres. Three model parameters, respectively, controlling snow mass, surface emissivity,
and relative humidity were systematically adjusted to obtain a large set of snow cloud profiles. The algorithm
retrieved snow parameters are the ones with computed Tbs that best match the observations at all five fre-
quencies. The model was applied to a case study, and the retrieved snow mass was shown to be consistent
with the corresponding radar reflectivity. Their study demonstrated that high-frequency PMWmeasurements
can provide information on snowfall over land. It also emphasized the importance of microphysics measure-
ments for accurate snowfall retrieval and the lack of such data.

Noh et al. [2006] developed a Bayesian snowfall rate algorithm for AMSU-B. They built the a priori database
required by the algorithm using an RTM and airborne and surface-based radar data collected from areas
around the Japan Sea. A notable feature of the algorithm is that scattering properties of nonspherical ice par-
ticles were used in the RTM to construct the a priori database. The Bayesian algorithm was applied to three
snowfall cases that occurred in the vicinity of the Japan Sea. The correlation coefficient between 1° × 1°
gridded AMSU-B snowfall rate and radar snow accumulation ranges from 0.6 for light snowfall to an impress-
ive 0.96 for heavy snowfall. The authors noted that there is a negative correlation between the amount of
liquid water in the snowing clouds and the correlation coefficient. In addition, the snowfall rate algorithm
is only applicable to the areas where the airborne and radar data used for building the a priori database
were collected.

Kim et al. [2008] incorporated several improvements in the physical snowfall model described in Skofronick-
Jackson et al. [2004] for AMSU-B. Some major improvements included the capability to compute and utilize
single scattering properties of various nonspherical ice particle shapes in RTM calculation, to adopt in situ
observation-based snow particle size distributions and to optimize retrievals with a Bayesian model as well
as considering Tb error covariance in the model. The updated algorithm was applied to the same snowfall
case as used in the original study and showed better consistency with radar reflectivity than the
original algorithm.

Liu and Seo [2013] took a statistical approach to develop a snowfall detection algorithm for AMSU-B and
Microwave Humidity Sounder (MHS). They trained the radiometer measurements using CloudSat detected
snowfall (defined as reflectivity ≥�15 dBZ) and created a snowfall look-up table (LUT). The satellite data at
five frequencies higher than 89 GHz were transformed to three principal components from the empirical
orthogonal function analysis and formed the three axis of the LUT. Each element of the LUT represented
snowfall probability defined as the number ratio of snowfall pixels and all data pixels. CloudSat-retrieved
snowfall rate data have also been used to train a snowfall rate algorithm for the Global Precipitation
Measurement (GPM) Microwave Imager (GMI). A major factor motivating these previous authors to adopt
the statistical method was that their research revealed a “warming” signal in high-frequency Tbs in most
snowfall rather than cooling. They believed that emission was the main reason for the warming and it was
inadequate to solely rely on the scattering effect to detect snowfall.

Kummerow et al. [2015] presented the Goddard profiling (the GPROF) 2014 precipitation algorithm for GMI. It
is a fully parametric Bayesian algorithm over all surface types without using explicit rainfall screening proce-
dure. The a priori database for the land portion of the algorithm was mostly constructed using National
Mosaic and Multi-Sensor Quantitative Precipitation Estimation (NMQ) project [Zhang et al., 2011] radar data
and the collocated overpasses of the GPM constellation members (V03). It is noted that the database has
since been updated using primarily the GPM Dual-frequency Precipitation Radar-retrieved precipitation
(V04). The database was divided into subsets based on land surface temperature, total precipitable water
(TPW), and surface type. Each surface type was assumed to have self-similar emissivity [Aires et al., 2011],
and a total of 14 surface types was used. The GPROF 2014 algorithm can retrieve both rainfall and snowfall
utilizing ancillary data to differentiate between precipitation types. It should be noted that the GPROF V03
for the MHS, Advanced Technology Microwave Sounder (ATMS) and Sounder for Probing Vertical Profiles
of Humidity (SAPHIR) are all based upon a NASA Multi-scale Modeling Framework-derived single (surface-
blind) database that retrieve snowfall directly from the observations [Kidd et al., 2016]. The GPROF V04 for
MHS/ATMS/SAPHIR uses scan-angle interpolation during retrieval.

You et al. [2015] described a prototype land precipitation algorithm for the Special Sensor Microwave
Imager/Sounder (SSMI/S). The a priori database of the Bayesian algorithm was developed from collocated
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NMQ radar precipitation data and SSMI/S observations (as the first three principal components of the Tbs).
The main purpose of the study was to examine the effect of using a single database on a Bayesian retrieval
algorithm versus using databases stratified by a set of ancillary parameters. Compared to using a single data-
base, You et al. [2015] demonstrated that significant improvement could be achieved with rainfall and snow-
fall detection and rate retrieval when databases were stratified by surface and cloud parameters.
Conceptually, the improvement could be attributed to the fact that each stratified database contains profiles
with more homogeneous surface and atmospheric conditions and hence can better represent the precipita-
tion structure for a given set of SSMI/S observations.

The algorithm introduced here employs a one-dimensional variational (1DVAR)-based approach to retrieve
snowfall rate (hereafter denoted as SFR to represent the algorithm developed in this study) over land. The
required input is measurements from polar-orbiting PMW instruments that have appropriate high-frequency
sounding channels. It is different from the above mentioned algorithms in that it relies on model physics to
cover a wide range of snowfall conditions rather than utilizing an a priori database or LUT. It is noted that
there are also some statistical elements in the SFR algorithm such as its calibration using radar snowfall esti-
mates (section 3.2) due to the lack of information on the structures of snowing clouds. Currently, the SFR pro-
duct is operational at National Oceanic and Atmospheric Administration (NOAA)/National Environmental
Satellite, Data, and Information Service (NESDIS). Historical SFR data can be obtained from NOAA
Comprehensive Large Array-data Stewardship System (CLASS). Section 2 describes the satellite instruments
and their measurements as input to the SFR algorithm. The 1DVARmodel and an ice particle terminal velocity
model are also introduced in this section. The SFR algorithm including a set of snowfall detection filters and
the snowfall rate component are detailed in section 3. The results of a validation study and a series of error
analyses are presented in section 4. Finally, section 5 summarizes the study and provides final conclusions.

2. Data and Model
2.1. Instruments and Data

The SFR algorithm described here utilizes measurements from two sets of PMW instruments: Advanced
Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS) pair, and the Advanced
Technology Microwave Sounder (ATMS). The first satellite that carries AMSU-A and MHS is NOAA-18, a satel-
lite in the NOAA Polar Operational Environmental Satellites (POES) program. Since the launch of NOAA-18 in
2005, three more satellites have been put in orbit with these sensors on board, i.e., POES NOAA-19, and the
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Metop-A and Metop-B.
Currently, ATMS is only aboard the Suomi-NPP although future Joint Polar Satellite System (JPSS) satellites
will also carry this instrument. AMSU-A and MHS combined have 20 channels ranging from 23.8 GHz to
190.31 GHz with different beam widths (Table 1). ATMS has similar frequency range but adds two additional
frequencies (Table 1). They are divided into three groups: temperature sounding, water vapor sounding, and
window channels. Among them, the high-frequency window and water vapor channels at 89/88.2 GHz and
above are particularly sensitive to precipitation sized ice particles and can be employed for snowfall rate
retrieval. These sensors are cross-track scanning radiometers with variable footprint size across scan line.
AMSU-A has 30 observations on each scan line, MHS has 90, and ATMS has 96.

The Tbs from the above mentioned radiometers are the main input data to the SFR algorithm and can be
obtained from NOAA CLASS. In addition, the algorithm also requires certain environmental state variables,
such as temperature and relative humidity profiles, provided by a numerical weather prediction (NWP)
model. The model employed in the current algorithm is the Global Forecast System (GFS) data downloadable
from NOAA National Operational Model Archive and Distribution System (NOMADS). In NOAA operation,
these input data are made available in near real time through NOAA internal data feed to ensure that the
SFR latency can meet the operational requirements.

2.2. Radiative Transfer Model and Variational Inversion Method

A 1DVAR approach [Yan et al., 2008] is used in the SFR algorithm to retrieve cloud properties. The original
model was developed to retrieve ice cloud properties and snow emissivity at five AMSU microwave window
channels: 23.8, 31.4, 50.3, 89, and 150 GHz. Among them, the 50.3 GHz is not used in the SFR algorithm
because (i) this frequency is difficult to simulate accurately and (ii) it holds much less information about
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snowfall than some other frequencies. In addition, a frequency (190.3 GHz for MHS and 183 ± 7 GHz for ATMS)
was added to the RTM for snowfall retrieval (section 3.2) due to its sensitivity to snowfall signal. The inversion
method involves a set of iterations where Tbs at the five frequencies are simulated using an RTM [Weng et al.,
2001; Yan et al., 2008] at each iteration with given atmospheric and surface parameters (i.e., control vector).
The differences between simulated and observed Tbs (ΔTbs) are compared to preset thresholds. The iteration
will terminate if the ΔTbs fall below the acceptable thresholds, indicating that the retrieval converges.
Otherwise, the elements of the control vector are adjusted and iteration will continue until it reaches the
maximum allowed number of iteration, indicating that the retrieval is nonconvergent. The threshold for
the first five frequencies is 1.5 K and for 190.3/183 ± 7 GHz is 3 K. The atmospheric and surface parameters
from a successful run become the retrieved properties using the inversion method. The parameters
include land surface emissivity at the six frequencies, total precipitable water (TPW), ice water path (Iw),
effective size of ice particles (De), surface temperature (Ts), and cloud temperature (Tc).

The RTM utilized in this 1DVAR algorithm is a two-stream, one-layer model [Weng et al., 2001]. Simulation
error caused by the simplifications is mitigated by a correcting procedure developed by Weng and Grody
[2000]. Simulated Tbs are corrected with a set of empirical equations that were derived from a data set of
Tb observations and the corresponding uncorrected simulations. According to Yan et al. [2008], the standard
deviations of the corrected Tbs at frequencies 23.8, 31.4, 89, and 150 GHz are 0.21, 0.33, 0.72, and 0.68 K,
respectively. Additional study shows that the standard deviation for 190.31 GHz and 183 ± 7 GHz are 4.06
and 2.62 K, respectively.

This 1DVARmodel was utilized in the SFR algorithm for a few reasons. While a simple assumption of one-layer
atmosphere is made in the RTM, it allows the model parameters, such as ice water path, to be expressed in
analytic forms and provides one with both qualitative and quantitative understanding of the connection
among model parameters. The two-stream formula makes computation effective so retrieval can be com-
pleted quickly even with full-orbit data. Computation efficiency and product latency can be important factors
for operational applications such as weather forecasting. Lastly, the 1DVAR model was developed for retriev-
ing snow emissivity; hence, its parameterization, such as bias correction and emissivity initialization, is

Table 1. AMSU/MHS and ATMS Channels Comparisona

AMSU/MHS ATMS

Ch GHz Beam Width(deg) Pol Ch GHz Beam Width(deg) Pol

1 23.8 3.3 QV 1 23.8 5.2 QV
2 31.399 3.3 QV 2 31.4 5.2 QV
3 50.299 3.3 QV 3 50.3 2.2 QH

4 51.76 2.2 QH
4 52.8 3.3 QV 5 52.8 2.2 QH
5 53.595 ± 0.115 3.3 QH 6 53.596 ± 0.115 2.2 QH
6 54.4 3.3 QH 7 54.4 2.2 QH
7 54.94 3.3 QV 8 54.94 2.2 QH
8 55.5 3.3 QH 9 55.5 2.2 QH
9 fo = 57.29 3.3 QH 10 fo = 57.29 2.2 QH
10 fo ± 0.217 3.3 QH 11 fo ± 0.3222 ± 0.217 2.2 QH
11 fo ± 0.3222 ± 0.048 3.3 QH 12 fo ± 0.3222 ± 0.048 2.2 QH
12 fo ± 0.3222 ± 0.022 3.3 QH 13 fo ± 0.3222 ± 0.022 2.2 QH
13 fo ± 0.3222 ± 0.010 3.3 QH 14 fo ± 0.3222 ± 0.010 2.2 QH
14 fo ± 0.3222 ± 0.0045 3.3 QH 15 fo ± 0.3222 ± 0.0045 2.2 QH
15 89.0 3.3 QV
16 89.0 1.1 QV 16 88.2 2.2 QV
17 157.0 1.1 QV 17 165.5 1.1 QH
18 183.31 ± 1 1.1 QH 18 183.31 ± 7 1.1 QH
19 183.31 ± 3 1.1 QH 19 183.31 ± 4.5 1.1 QH
20 190.31 1.1 QV 20 183.31 ± 3 1.1 QH

21 183.31 ± 1.8 1.1 QH
22 183.31 ± 1 1.1 QH

aQV: quasi-vertical polarization and QH: quasi-horizontal polarization.
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consistent with emissivity properties of cold conditions. The close connection between snow emissivity and
snowfall makes the 1DVAR an appropriate model to use in a snowfall rate algorithm.

2.3. Ice Particle Terminal Velocity

An important component of the SFR algorithm is the ice particle terminal velocity. Heymsfield and Westbrook
[2010] modified Mitchell’s [1996] formula for ice particle fall speed and developed a new equation:

V Dð Þ ¼ ηδ20
4ρaD

1þ 4
ffiffiffi
Χ

p

δ20
ffiffiffiffiffi
C0

p
 !1=2

� 1

2
4

3
5
2

; (1)

where V is ice particle terminal velocity, D the maximum dimension of the ice particle, η dynamic viscosity of
air, ρa air density, δ0 and C0 are fitting parameters, δ0 = 8.0 and C0 = 0.35, and the modified Best number X is
defined as

X ¼ 8mgρa
πη2

ffiffiffiffiffi
Ar

p ; (2)

where m is mass, m=πD3ρI/6 for spherical particles, ρI density of ice particle and assumed to be 0.6 g/cm3, g
the standard gravity, and Ar the ice particle area ratio (the area of the particle projected normal to the flow
divided by the area of a circumscribing disc) and is 1 for spherical particle.

Heymsfield and Westbrook [2010] computed terminal velocities of ice particles in various shapes using this
approach and compared with measurements. Their results show that the predicted and the measured parti-
cle fall velocities agree well for all particle shapes examined. This conclusion is the basis for selecting the
Heymsfield and Westbrook [2010] model to compute ice particle terminal velocity in the SFR algorithm.

3. Methodology

The SFR algorithm consists of two main components: snowfall detection (hereafter denoted as SD to repre-
sent the algorithm embedded in SFR) and snowfall rate. They are essentially two independent algorithms.
The former is a statistical model, while the latter is physically based. The focus here is on the introduction
of the snowfall rate component, although descriptions of a set of snowfall filters will also be given since they
are part of the SD algorithm and have only been briefly mentioned previously [Foster et al., 2012].

3.1. Snowfall Detection

Snowfall detection is an integral part of the snowfall rate retrieval. Only when snowfall is detected at a field of
view (FOV) will the SFR algorithm be applied to retrieve snowfall rate. There are two elements in the SD algo-
rithm: a logistic regression-based statistical model [Kongoli et al., 2015] and a set of filters based on NWP
model data.
3.1.1. Statistical Snowfall Detection Model
The statistical SD model is detailed in Kongoli et al. [2015] and briefly described here for completeness. The
model derives the probability of snowfall from the principal components of the microwave frequencies at
and above 89 GHz, i.e., seven frequencies for ATMS and five for MHS (section 2.1). The logistic regression
SDmodel was trained using collocated satellite data and ground observations. Two sets of model coefficients
were derived, each for a certain temperature regime, because the high frequencies respond differently to
snowfall in relatively “warm” atmosphere versus under very cold conditions. The temperature sounding chan-
nel at 53.6 GHz is taken as a proxy of the atmospheric temperature and is used to define the two regimes.
Statistical analysis was conducted to establish optimal probability thresholds for snowfall occurrence.
3.1.2. Snowfall Filters
Both rainfall and snow cover can cause similar responses in microwave measurements as snowfall. Therefore,
they can contaminate the outcome of the statistical SDmodel. This consideration led to the development of a
set of filters to further screen the “snowfall” identified by the SD model. The filters use atmospheric and sur-
face information from the GFS, the global operational NWP model at NOAA’s National Centers for
Environmental Prediction (NCEP). The reason for using NWP forecast instead of analysis data is that the
SFR product is generated in near real time at NOAA/NESDIS which requires timely data input. The GFS model
runs four times daily and generates forecast out to 192 h at 3 h increment.
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The first filter checks 2 m temperatures, T2m, at the two consecutive GFS forecast times that encompass
the satellite passing time. If both temperatures are above 1°C, it indicates a persistently warm environ-
ment at the surface that generally cannot sustain snowfall. The second filter checks T2m and the maxi-
mum of the atmospheric temperature profile, Tmax, and compares them with their respective
thresholds at 1°C and 0.5°C. The algorithm searches for Tmax starting from one model level above the sur-
face level and up. Therefore, T2m and Tmax are mutually exclusive. Warm layers in the atmosphere can
result in freezing rain or mixed precipitation at the surface. These conditions can cause complicated
responses in satellite measurements and lead to large bias in a scattering-based snowfall algorithm like
SFR. This filter is designed to eliminate precipitation phases other than snowfall. The threshold for T2m
was selected based on analysis of ground observed T2m during snowfall. The analysis revealed that only
a small percentage of T2m exceeded 1°C. For instance, only 4% of the T2m associated with snowfall is
above 1°C in the in situ data used to develop the ATMS SD algorithm. Raising this temperature threshold
will increase the risk of elevated false alarm rate in identified snowfall. The 0.5°C threshold for Tmax is a
conservative adaptation of a snowfall criterion used at some National Weather Service Weather
Forecasting Offices (B. Carcione, personal communication, NWS, 2014). The criterion requires Tmax to be less
than 1°C and was derived from the results of several studies on freezing precipitation [Rauber et al., 2001a,
2001b; Stewart and King, 1987].

The most important filter is a check on cloud thickness. The current algorithm requires cloud thickness to
be at least 1500 m to pass this filter. While this requirement is likely to remove shallow snowfall such as
lake effect snow, it will not significantly lower the Probability of Detection (POD). This is because the SFR
algorithm is not sensitive to very shallow snowfall due to the weak effect from the latter on microwave
measurements. The exertion of a cloud thickness threshold eliminates most of the confusions between
true snowfall and snow cover on the surface. Our analysis has shown that this is a very effective filter that
can significantly reduce false snowfall detection.The GFS relative humidity (RH) profile is utilized to deter-
mine cloud thickness. An atmospheric level is considered to have a cloud if RH is at or above 89%. This
threshold is consistent with the critical RH (RHc) used in the GFS microphysics scheme (S. Moorthi, perso-
nal communication, NOAA/NCEP, 2011):

RHc ¼ 0:85þ 0:1499w (3)

where

w ¼ �0:1529� ln
cos θð Þ
nx�ny

� �
þ 9:8008

� �

where θ is latitude, nx is dimension of the GFS in the latitude direction, and ny is dimension of the GFS in the
longitude direction. For 1° GFS, 89% is a representative RHc for midlatitude.

Cloud thickness is an accumulation of all atmospheric levels where RH is at or above 89% up to 5 km regard-
less of single-layer or multilayer clouds. All channels utilized in the algorithm peak below this maximum
height. In addition, the base of snowing cloud usually extends well below 5 km. There are potential cases
where each layer of a multilayer cloud is less than 1.5 km thick, but the combined layers can satisfy this cri-
terion. However, since the maximum height is set at 5 km, a combined cloud thickness greater than 1.5 km
below this level is still a substantial existence of clouds and can produce snowfall. It is noted that this check is
but one of several checks in the algorithm and is a necessary but not sufficient condition for the existence of
snowfall. This filter will eliminate some legitimate but shallow snowfall such as lake effect snow. However,
passive microwave measurements are intrinsically insensitive to this type of snowfall so the filter does not
impose a significant impact on the POD.

The current SD algorithm is limited to detecting snowfall when the limb corrected 53.6 GHz is higher than
240 K. Based on the empirical equation in Figure 1 of Kongoli et al. [2015], this low limit corresponds to
about �14°C/7°F in 2 m air temperature. There is no temperature upper limit for retrieval except the
temperature-related criteria that is part of the SD algorithm. This temperature range allows snowfall rate
retrieval over the majority of the globe and an overwhelming portion of the contiguous United States
(CONUS) throughout the winter season regardless of whether there is snow cover on the ground. A very
cold atmosphere usually does not contain enough water vapor that can provide the necessary emission
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to mask the surface. Consequently, measurements from the water vapor sounding channels are often
contaminated by the surface under such conditions. Even the 157 GHz (MHS) and 165.5 GHz (ATMS),
which are sensitive to both the atmosphere and the surface, have different characteristics under cold
and dry conditions versus when the atmosphere is relatively warm and moist. Since the SD algorithm
relies on water vapor to separate in-cloud snow from snow cover on the surface, the changes in channel
measurements make it difficult to apply the current algorithm in very cold environments, i.e., limb cor-
rected 53.6 GHz less than 240 K. Additional data sources and/or framework will have to be used to
develop a cold weather SD algorithm.

3.2. Snowfall Rate

The snowfall rate component of the SFR algorithm is more physically based on its formulation than the snow-
fall detection approach. From Yan et al. [2008] andWeng et al. [2001], the particle distribution function (PDF)
of ice particles with a modified gamma distribution is

N Dð Þ ¼ N0Dν�1e�D=Dm

Γ νð ÞDν
m

; (4)

where D is the diameter of the ice particle (assuming spherical habit), Dm the typical diameter of the particle,
N0 the total number of particles, ν the shape parameter for the gamma distribution, and Γ the gamma func-
tion. Furthermore,

Dm ¼ De
Γ νð Þ

Γ ν� 1ð Þ (5)

and

N0 ¼ 6IwΓ3 νþ 1ð Þ
πρID

3
eΓ νþ 3ð ÞΓ2 νð Þ ; (6)

where De is the effective diameter of the ice particles and Iw ice water path. If the shape parameter is assumed
to be 1, the PDF in equation (4) reduces to an exponential distribution:

N Dð Þ ¼ Iwe
� D

De

πρID
4
e

: (7)

With the assumption that the number of ice particles follows the above exponential distribution, the unad-
justed (explained in text below) water equivalent snowfall rate, SFRu, can be expressed as follows:

SFRu ¼ ∫
∞

0
πρID

3N Dð ÞV Dð Þ
6Hρw

dD (8)

or

SFRu ¼ Iw
6HρwD

4
e

∫
∞

0 D
3e�

D
DeV Dð ÞdD (9)

where H is cloud thickness and ρw the density of water. By adopting the Heymsfield and Westbrook’s model
(equations (1) and (2)) and assuming spherical ice habit, SFRu can be derived as follows:

SFRu ¼ Iwηδ20
24HρwρaD

4
e

∫
∞

0 D
2e�D=De 1þ 8D3=2

ηδ20

ffiffiffiffiffiffiffiffiffiffiffi
gρIρa
3C0

r !1=2

� 1

2
4

3
5
2

dD: (10)

An implicit assumption is made in the above equation, i.e., ice water content (IWC) is uniformly distribu-
ted in the cloud column. It is consistent with the two-stream RTM [Yan et al., 2008]. However, this
assumption is not a true representation of cloud physics. In snowing clouds, ice crystals grow in mass
as they fall in the cloud through Bergeron process, i.e., supercooled water vapor deposition, or through
accretion (riming), i.e., freezing of super cooled liquid droplets onto the surface of ice crystals. These
mechanisms generally lead to higher IWC at the lower portion of the cloud than in the upper portion.
For instance, Figure 1 presents 10 randomly selected, normalized IWC estimate profiles retrieved from
CloudSat [Stephens et al., 2002]. In general, these profiles show an increasing trend from cloud top to
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cloud base and supports the notion
that IWC is not uniformly distributed
in cloud. To mitigate the effect of the
simplistic assumption about IWC, an
adjusting factor α is introduced so the
final SFR equation is as follows:

SFR ¼ A∫
∞

0 D
2e�D=De 1þ BD3=2

� �1=2
� 1

� �2
dD

(11)

where

A ¼ αIwηδ20
24HρwρaD

4
e

(12)

B ¼ 8

ηδ20

ffiffiffiffiffiffiffiffiffiffiffi
gρIρa
3C0

r
: (13)

Since equation (11) does not have an
analytical solution, it is solved nume-
rically using Romberg’s method. Factor
α is estimated by spatially and tem-
porally matching SFRu with the Stage
IV [Lin and Mitchell, 2005] precipitation
data (http://www.emc.ncep.noaa.gov/
mmb/ylin/pcpanl/stage2/) and adjust-
ing toward the latter. Stage IV is a Next
Generation Weather Radar and gauge
combined hourly precipitation product
generated by National Oceanic and
Atmospheric Administration (NOAA)/
National Centers for Environmental

Prediction (NCEP). Figure 2 shows ATMS SFRu bias from Stage IV using ATMS retrieval from four snowfall
events in the contiguous United States (CONUS). The events occurred on 19–20 December 2012 in the
western region to the Midwest, 26 December 2012 in the Midwest to the East Coast, 21 February 2013
in the Midwest, and 5–6 March 2013 in the Midwest to the Mid-Atlantic Region. Most snowfall was from
synoptic systems and ranged from light to heavy in intensity across the snow areas. A linear relationship

between SFR and SFRu, i.e., a constant α
was derived based on the plot. This is
equivalent to assuming that the ratio
between the average IWC in the cloud
column and the “effective IWC,” IWCe,
is a constant. SFR can be conceptually
expressed as the product of IWCe and
ice particle fall velocity, V. While this
approach results in good correlation
between SFR and Stage IV, the bias
indicates a clear underestimation in
the SFR product. To reduce the bias,
the ATMS and MHS SFR products were
further calibrated against the Multi-
Radar Multi-Sensor (MRMS) radar
instantaneous snowfall rate data
[Zhang et al., 2016] (http://mrms.ou.
edu/) developed at the NOAA/National

Figure 1. CloudSat derived ice water content (IWC) profiles. The values
have been normalized.

Figure 2. Bias of unadjusted MHS snowfall rate from Stage IV hourly pre-
cipitation data.
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Severe Storms Laboratory (NSSL).
The radar estimates were collocated
with satellite retrievals in space
through convolution and in time
with a 30 min shift. As a measure
of quality control, only the MRMS
data with the Radar QPE Quality
Index at or greater than 0.5 were
used based on the recommendation
of a MRMS developer (J. Zhang,
personal communication, NSSL, 2014).
Analysis has shown that the maxi-
mum correlation between the two
sets of data has a time shift (Figure 3).
This is due to the fact that the
measurements of microwave sensors
integrate the combined effect from
the entire precipitation layer, while

radar precipitation is usually derived from the base reflectivity. The height difference compounded with
the relatively slow terminal velocity of snow particles gives rise to the time shift shown in Figure 3. For cali-
bration, a satellite and radar collocated data point is selected only if more than 90% of a snowing FOV
(SFR > 0) is filled with radar pixels that are snowing. It is also required that no radar pixel in the FOV is rain.
Such stringent criteria were set to ensure the quality of the calibration data. By histogram matching the
collocated data following the approach described in Kidder and Jones [2007], the final adjusting function
(instead of a single factor) for ATMS SFRu is derived:

SFR ¼ 2:98SFRu � 0:48SFRu2 þ 0:06SFRu3 (14)

For MHS SFRu:

SFR ¼ 3:22 SFRu � 0:39SFRu2 þ 0:04SFRu3: (15)

Figure 4 compares the probability distribution functions (PDFs) of ATMS SFR versus MRMS instantaneous
snowfall rate and MHS SFR versus MRMS instantaneous snowfall rate before and after histogram matching.
Before the adjustment, both the ATMS SFR and the MHS SFR have more very light snowfall (~0.2 mm/h) than

Figure 3. Statistics between ATMS SFR and MRMS snowfall rate estimates as
function of time shift between the two (satellite first). The plot reveals that
the two sets of data are best correlated with a 30 min time shift.

Figure 4. PDFs of ATMS SFR and the matching MRMS instantaneous snowfall rate (a) before histogram matching and
(b) after histogram matching, and PDFs of MHS SFR and the matching MRMS instantaneous snowfall rate (c) before
histogram matching and (d) after histogram matching.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026325

MENG ET AL. MICROWAVE SNOWFALL RATE ALGORITHM 6528



MRMS but not enough snowfall
between 0.5 mm/h and 2–3 mm/h
(Figures 4a and 4c). The histogram
matching effectively reduces such
discrepancy for ATMS SFR so its PDF

agrees much better with that of MRMS (Figure 4b). However, the adjustment of MHS PDF is less than satisfac-
tory at the low end (<1 mm/h) (Figure 4d). Much more MRMS snowfall rate data fall around 0.5 mm/h than
MHS SFR. The difference is balanced out by having more MHS data lower than about 0.2 mm/h and around
1.5 mm/h than MRMS data. Table 2 gives the calibration statistics for both ATMS and MHS SFRs. The advan-
tage of ATMS over MHS for snowfall rate retrieval is reflected in the higher ATMS correlation coefficient at
0.55 versus MHS 0.47 and lower ATMS RMS at 0.67 mm/h versus MHS 0.74 mm/h. Both have the same low
bias of �0.03 mm/h. The ATMS SD also showed more skill than MHS SD in our previous studies (results not
shown). It is conceivable that the algorithm is optimized for CONUS since the adjustment was based on
the MRMS data which is limited to this region. However, it should be pointed out that the cloud properties
are retrieved from the 1DVAR and is independent of the radar data. The correlation between SFR before
and after the adjustment essentially remains unchanged. The main purpose of the radar-based adjustment
is to reduce the bias caused by the assumption about IWC profile.

Other variables in equations (11)–(13) are as follows: η, H, and ρa are derived from GFS, ρw is 1000 kg/m3, ρI is
set at 600 kg/m3, and Iw and De are retrieved using the 1DVAR described in section 2.2. The original model
was modified for MHS and ATMS, respectively. An additional channel, 190 GHz (183 ± 7 GHz), was added
to the RTM for MHS (ATMS). The weighting function of this water vapor sounding channel peaks higher than
the 157 GHz (165.5 GHz) and can complement the latter by pulling in more information about in-cloud snow-
fall. It is the most sensitive channel to precipitation among the water vapor sounding channels in MHS
(ATMS). Including this channel in the RTM helps to improve the retrieval accuracy of the cloud properties.
In the original 1DVAR, TPW and Ts are retrieved variables. However, these quantities are derived from GFS
and are fixed in the SFR algorithm in an effort to reduce the size of the control vector.

Brightness temperatures at window channels are closely modulated by surface emissivity. If there is not
enough water vapor in the atmosphere, even somewater vapor sounding channels with low peaking weight-
ing functions, such as 183 ± 7 GHz, can be under significant influence from the surface. However, snow emis-
sivity is highly variable and dependent on many factors including snow age, snow depth, snow water
content, and incident angle [Yan et al., 2008]. Much of the state information required to directly compute
snow emissivity is not readily available. One of the major advantages of adopting the 1DVAR approach to
derive cloud properties is that it simultaneously retrieves emissivity. This ensures that all retrieved variables
are physically consistent and reconcilable in the framework of the two-stream radiative transfer model. It also
eliminates the need for a priori knowledge of the land surface types and their emissivity. The SFR algorithm is
applicable to all land surfaces including snow cover.

The SFR algorithm runs for all satellite FOVs where snowfall is detected by the SD algorithm. The 1DVAR con-
verges in about 90% cases based on analysis (section 4.2.4). Nonconvergence generally occurs when snowfall
signal is very weak or very strong and indicates inadequate initialization of the control vector. Currently, the
nonconvergent retrievals are included in the SFR product since they usually contain some useful information
such as the existence of snowfall and the range of snowfall intensity. Further study is needed to reduce the
occurrences of nonconvergence.

4. Validation and Error Analysis
4.1. Validation

The SFR algorithmwas validated against both radar estimates and gauge observations. A SFR validation study
was conducted using data collected from several multiday snowfall events in CONUS in winter 2013–2014
and winter 2014–2015 (Table 3). These were different events from those used for algorithm calibration.
The satellite-retrieved product was collocated with MRMS instantaneous snowfall rate data by convolving
MRMS pixels to the satellite FOVs. As discussed above, there is a 30 min time shift between satellite observa-
tions and the collocated MRMS data for better data compatibility (section 3.2). Figure 5 compares the PDFs of
ATMS SFR and MRMS instantaneous snowfall rate estimates and those of MHS SFR and MRMS estimates.

Table 2. Calibration Statistics of the SFR Algorithm

Correlation Coefficient Bias (mm/h) RMS (mm/h)

ATMS 0.55 �0.03 0.67
MHS 0.47 �0.03 0.74
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ATMS and MRMS generally agree well with the former having slightly more light snowfall around 0.5 mm/h
and below and less medium to intense snowfall than MRMS above 1 mm/h (Figure 5a). The MHS validation
PDF shows similar pattern as for calibration for light snowfall but with much better agreement with MRMS. It
is noted that the criteria for collocating SFR andMRMS are different for calibration (section 3.2) and validation.
Specifically, the requirement for 90% radar coverage within a FOV was removed when building the validation
data set. This is due to the consideration that validation should cover all cases where SFR > 0 regardless of
radar coverage within the FOVs. Such statistics are more representative of the algorithm performance and
are more meaningful to users. However, the requirement about no raining radar pixel in a satellite FOV still
remained. This change explains the fact that there is much more light snowfall in the validation data than
in the calibration data (Figures 5 and 4). Figure 6 displays the scatterplots of MRMS snowfall rate versus
ATMS SFR and MRMS versus MHS SFR. Data are grouped and averaged in 0.2 mm/h bins. The colors represent
data density. The collocated ATMS data show better tendency to follow the 1:1 line than the MHS data does
which signals a higher correlation. The ATMS data also display less scattering than the MHS data and suggest
a lower ATMS RMS than MHS. In keeping with Figure 5, an overwhelming amount of data concentrates in the
light snowfall region (≤0.5 mm/h) for both ATMS and MHS. In addition, there is an imbalance in the distribu-
tion of the data with more data points fall above the 1:1 line than below. This indicates that both ATMS SFR
and MHS SFR have an underestimation issue.

The validation statistics in Table 4 quantify the above analyses, i.e., ATMS has a higher correlation coefficient
(0.52) than MHS (0.47) and a lower RMS (0.55 mm/h) than MHS (0.69 mm/h), and both have negative bias at
�0.07 mm/h and�0.1 mm/h, respectively. The statistics are generally comparable to the calibration statistics
for both instruments but with slightly larger bias and smaller RMS. The underestimation (negative bias) is
likely caused by not taking into account the effect of supercooled cloud liquid water in the RTM. Contrary
to the cooling effect of ice scattering on Tb, cloud liquid water can elevate Tb through emission hence mask-
ing the scattering signal from snowfall [Liu and Seo, 2013]. Wang et al. [2013] estimated that about 72% of
snowing clouds contain supercooled cloud liquid water.

SFR performance for the historical 2016 U.S. East Coast Blizzard [Robinson, 2016; Greybush et al., 2017] was
analyzed and is presented here as a validation case study. The intense nor’easter hit the Mid-Atlantic
Region on 22–24 January 2016 and produced record snowfall in many local areas. The SFR product success-
fully captured the evolution of the snowstorm with snowfall rate estimates from the five satellites. Figure 7
shows a sequence of SFR images in an Advanced Weather Interactive Processing System (AWIPS)-like display
and the images of the corresponding MRMS instantaneous snowfall estimates. The snowfall patterns from

Table 3. Validation Events

Event Number Date Event Type

1 21–22 January 2014 Moderate to strong nor’easter in the Mid-Atlantic Region
2 28–29 January 2014 Significant snowstorm mostly impacting the southeast states
3 2–4 February 2015 Light-moderate event in the Midwest
4 16–17 February 2015 Cross-country (Colorado to Mid-Atlantic) major snowstorm
5 20–22 February 2015 Two events: Event 1: Light snowfall in the Rockies, Event 2: Intense snowstorm

from Midwest to Mid-Atlantic to northeast
6 26 February 2015 to 1

March 2015
Light to moderate snowfall from Colorado to Midwest

Figure 5. Validation: comparison of PDFs between (a) ATMS SFR and MRMS instantaneous snowfall rate and (b) MHS SFR
and MRMS instantaneous snowfall rate.
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the SFR product generally resemble those of the MRMS snowfall data. The SFR statistics from this case
(Table 5) demonstrate once again that ATMS SFR outperforms its MHS counterpart with a correlation coeffi-
cient of 0.6 for ATMS and 0.54 for MHS and much lower bias. It is noted that both the statistics in Table 5 and
the images in Figure 7 are based on ATMS SFR collocated with MRMS data that have 30 min time shift.

The SFR retrievals are also compared to climatology of gauge snowfall observations. Figure 8a presents the
January average total snowfall computed from ATMS SFR over the CONUS from 2015 to 2016, and Figure 8b
shows the gauge January average total snowfall from 1981 to 2010 [Durre et al., 2013]. The total snowfall is
in solid form. A standard 10:1 snow to liquid ratio was assumed to convert ATMS SFR to solid snowfall.
While the images in Figure 8 are not from the same time period and large uncertainty may exist in the
assumption about snow to liquid ratio, the total snowfall reflects snowfall tendency in CONUS which gener-
ally conforms to climatic norm when averaged over a period of time. Therefore, snowfall patterns shown in
these images are more revealing than the absolute snow amount. The heavy snowfall along the Rockies and
in the northeast has very similar patterns in the ATMS SFR and the gauge snowfall images. Snow in the Great
Plains and the Midwest is also mostly comparable between the satellite product and the gauge observations.
There are some notable differences in the two images, particularly in the “snowbelt” in the Great Lakes region
and along a few mountain ranges: the Cascades in Oregon, the Sierra Nevada in California, and the
Appalachians in West Virginia. The snowfall in the snowbelt is overwhelmingly lake effect snow, while the
dominant mechanism to generate snowfall in these mountain ranges is orographic forcing. Lake effect snow
is characterized by narrow bands of often intense snowfall that occurs when cold air passing over warmwater
of large lakes. It is associated with shallow convective processes and has abundant supercooled liquid water
in the clouds. PMW observations generally are not very sensitive to hydrometeors in such shallow clouds. The
emission effect of liquid water further diminishes the scattering signal from ice particles. In addition, the snow
bands of lake effect snow usually have widths finer than satellite FOV hence does not carry enough weight
when averaged over the entire FOV. Consequently, the SFR algorithm has difficulty detecting lake effect snow
or, when the snowfall is detected, it underestimates the intensity. Orographic precipitation is caused by a
large-scale air mass moving upward on the windward side of a mountain. The moisture in the air condenses
as it ascends and eventually falls back down as precipitation. Orographic snowfall is another example of a
shallow snowfall system that may contain copious supercooled cloud liquid water [Kusunoki et al., 2004].
The Cascades and Sierra Nevada Mountains block the westerly wind that carries moisture from the Pacific

Ocean and often create intense
orographic snowfall in the winter
season [Meyers et al., 2011]. While
the Appalachian Mountains are
not adjacent to any large lakes, its
orographic snowfall is often

Figure 6. Validation: (a) MRMS snowfall rate versus ATMS SFR scatterplot and (b) MRMS snowfall rate versus MHS SFR
scatterplot. Colors represent data density.

Table 4. Validation Statistics of the SFR Algorithm

Correlation Coefficient Bias (mm/h) RMS (mm/h)

ATMS 0.52 �0.07 0.55
MHS 0.47 �0.10 0.69
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enhanced by moisture carried to the mountain range by strong wind flowing off the Great Lakes [Abraham,
2014]. In much the same way that the current SFR algorithm is not suitable for lake effect snow, it also
underperforms for the shallow orographic snowfall that contains abundant liquid water. Effort is underway
to incorporate the emission effect of liquid water in the SFR algorithm. It is expected that the new
development will lead to improved algorithm performance for some orographic snowfall. It remains to be
seen if the enhanced algorithm is applicable to lake effect snow which is more challenging than
orographic snowfall because of its narrow snow bands.

4.2. Error Analysis

The SFR algorithm includes some assumptions that can cause various degrees of uncertainty in the retrievals.
Some major assumptions are examined in this section for their impact on the SFR product. These include the
uncertainty that is unique to the SFR algorithm and those similar to what Yan et al. [2008] studied in the con-
text of emissivity retrieval since both algorithms employ the same 1DVAR approach.
4.2.1. Effect of Ice Particle Mass Density
In the SFR algorithm, the mass density of ice particle is assumed to be 600 kg/m3, i.e., a constant. Two sets of
experiments were conducted to quantify the effect of ice density on SFR: (i) the mass density was systema-

tically changed and was applied only
to the RTM, while it remains at
600 kg/m3 for the rest of the SFR
algorithm and (ii) the densities were
applied to the entire algorithm. Data
used in this study were ATMS

Figure 7. (first and third rows) SFR in AWIPS format and the (second and fourth rows) MRMS instantaneous snowfall rate estimates with 30 min shift during the East
Coast Blizzard on 22–24 January 2016.

Table 5. SFR Statistics From the 2016 U.S. East Coast Blizzard

Correlation Coefficient Bias (mm/h) RMS (mm/h)

ATMS 0.60 �0.14 0.79
MHS 0.54 �0.53 0.88
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measurements from 10 days in February and March of 2015 and January and February of 2016. The data were
over CONUS because there was snowfall over large area of CONUS on those days. There were more than
100,000 snowfall data points in the data set. Unless otherwise noted, all analyses in this section were
performed using this data set. Since the MHS and ATMS SFR algorithms follow the same approach, the
conclusions from the error analyses described here are expected to be mostly applicable to the MHS
algorithm even though there are some differences between the two such as the frequencies.

Figure 9 shows the mean and standard deviation (as error bar) of the difference in SFR (ΔSFR) between using
the various mass densities and using density of 600 kg/m3 in the RTM. ΔSFR increases with both SFR
(density = 600 kg/m3) and with the density difference, Δd. Smaller mass density results in larger SFR if the
density change is limited to the RTM. The change is less than about 7% if Δd is 50 kg/m3 and less than about
12% if Δd is 100 kg/m3. The only exception (and the maximum) ΔSFR is 14% with mass density equals to
500 kg/m3 and SFR (density = 600 kg/m3) is between 4 and 5 mm/h.

Besides its effect on scattering properties, the mass density of ice particle also impacts its fall velocity
(equation (1)). This impact appears to counter the effect of the scattering property change caused by chan-
ging mass density (equation (10)). Table 6 gives the mean ΔSFR between using various mass densities and
using mass density of 600 kg/m3 if the same mass density is applied to the entire SFR algorithm. The
maximum ΔSFR-to-mean-SFR ratio is �1.6% if mass density is 500 kg/m3 and SFR is less than 1 mm/h. The
maximum absolute mean ΔSFR is 0.06 mm/h or 1.25% if mass density is 500 kg/m3 and SFR is between 4

Figure 8. (a) ATMS SFR January average total snowfall from 2015 to 2016 and (b) Gauge January average total snowfall
from 1981 to 2010 [Durre et al., 2013].

Figure 9. Mean and standard deviation (as error bar) of SFR difference (ΔSFR) between using various mass densities and
using mass density equaling to 600 kg/m3 in the RTM.
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and 5 mm/h. While the impact of mass density on RTM retrieval (hence on SFR) is noticeable, the above ana-
lysis shows that the effect is largely canceled by the opposite effect of mass density exerted on ice particle fall
velocity. It is concluded that at least for the snowfall cases examined, the assumption about fixed mass den-
sity of 600 kg/m3 has a small impact on the overall SFR retrievals.
4.2.2. Effect of Ice Particle Size Distribution
From Yan et al. [2008], the assumptions about ice particle size distribution can have a considerable impact on
simulated Tbs if Iw and De are large, a condition usually corresponds to intense snowfall in cold season. For
instance, if the shape parameter for ice particle distribution, ν, increases from 1 (used in the RTM) to 1.5, it
can result in an increase of 3.3 K and 8.9 K, respectively, in Tbs at 89 and 150 GHz when both Iw and De are
0.2 mm [Yan et al., 2008]. Given the magnitude of the impact ν has on Tbs, a sensitivity study on SFR to Tbs
was carried out to examine the effect of ice particle size distribution on SFR.

The ATMS SFR is retrieved using measurements at 23.8, 31.4, 88.2, 165.5, and 183.31 ± 7 GHz. These frequen-
cies have varying degree of importance and respond differently to the retrievals. A study using the data set
described in section 4.2.1 shows that the correlation coefficients between the retrieved SFR and the above
frequencies are, respectively, 0.09, 0.10, 0.11, 0.53, and 0.70. The statistics reveal that 165.5 GHz and
183.31 ± 7 GHz have much larger impact on SFR than the other three channels. Therefore, the following ana-
lysis will focus on these two frequencies. Further regression study on the data set (figure not included) shows
that for every 1 mm/h increase in SFR, Tb at 165.5 GHz decreases by about 10 K and Tb at 183.31 ± 7 GHz by
about 6.5 K. This Tb ratio between the two frequencies will be used in analysis below except in some special
cases. Figure 10a displays the mean and standard deviation of ΔSFR when Tb at 165.5 GHz is perturbed by up
to ±10 K and 183.31 ± 7 GHz by up to ±6.5 K. Figure 10b shows the mean ΔSFR to mean SFR ratios (as
percentages) for the same Tb perturbations. From the figures, negatively perturbed Tbs represent increased
scattering from ice particles hence increased SFR. The larger the magnitude of the negative perturbation,
the more intense the snowfall. Positively perturbed Tbs weaken snowfall by various degrees depending on
the magnitude of the perturbation. All ΔSFR are around or less than 0.4 mm/h except when perturbations
at 165.5 GHz and 183.31 ± 7 GHz are �10 K and �6.5 K, respectively. In the latter case, the mean Δ(SFR)
changes from 0.34 mm/h to 0.88 mm/h for mean SFR ranging from 0 mm/h to around 5 mm/h. Figure 10b
shows that light snow has the largest percentage changes as a result of the perturbation. At the high end
of SFR, the maximum change is about 10% with positive perturbation and about 20% with negative pertur-
bation. Mean SFR changes by 20% to almost 70% for heavy to light snowfall if 165.5 GHz and 183.31 ± 7 GHz
are perturbed by �10 K and �6.5 K, respectively. Based on Yan et al. [2008], Tbs under heavy snowfall can
change on orders similar to such perturbation if ν deviates significantly from 1. The above analysis reveals
the importance of ice particle size distribution to the accuracy of SFR retrieval especially for intense snowfall.
This is an area that will be further studied in the future.
4.2.3. Effect of Ice Particle Shape
Natural snow particles can have shapes of various pristine habits or form aggregates. The SFR algorithm was
developed based on the assumption of spherical ice habit. To examine the effect of this simplistic assump-
tion, the scattering properties of spherical habit and three nonspherical ice habits from Liu [2004] were used
in the 1DVAR to retrieve SFR. The three nonspherical shapes were rosettes, sector (type-A snowflake), and
dendrite (type-B snowflake). MHS measurements from five snowfall events in February 2014 and January
and February of 2015 were used in this study. Close to 10,000 MHS SFR retrievals were collocated with
MRMS snowfall data, and their scatterplots are presented in Figure 11 along with the linear regression lines
and the corresponding statistics. While the spherical shape habit results in the highest correlation with the
radar estimates (r = 0.58) among the four shapes examined, the minimum RMS is achieved with the rosettes.
Dendrites appear to have the worst overall statistics withmuch larger RMS and bias than the other ice particle
shapes. It is noted that some studies have found that sectors gave the best simulation results among the four
shapes [e.g., Geer and Baordo, 2014]. The statistics in Figure 11 demonstrate that the assumption of spherical
particle shape leads to reasonable algorithm performance.

Aggregates are a common occurrence and prevail when temperature is between 0°C and �5°C [Hobbs et al.,
1974]. Kuo et al. [2016] built a large database of the scattering properties of pristine ice habits and snow
aggregates. Figures 12a and 12b are from Kuo et al. [2016] and show the extinction efficiency and asymmetry
parameter versus liquid-equivalent snow particle diameter for 165.5 GHz frequency. Included in the figures
are the scattering properties of a vast number of nonspherical habits and aggregates as well as those of
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spherical habits with various densities calculated using Mie code. The spherical habit densities shown in
Figure 12 are size dependent [Heymsfield et al., 2010], 0.1 g/cm3, and 0.3 g/cm3. Recall that the density of
spherical ice particle is assumed to be 0.6 g/cm3 in the SFR algorithm. The extinction efficiency of spherical
habit is closest to that of the nonspherical habits and aggregates when the constant density is 0.3 g/cm3.
The same conclusion can be drawn for the asymmetry parameter. Note that the range of the liquid-
equivalent snow particle diameter in Figure 12 is more suitable for aggregates than for pristine habit. In
the SFR computation, De is generally less than 0.5 mm. Figure 12 shows that the scattering properties of
the spherical and nonspherical/aggregate particles agree well with each other in this size range. It would
be desirable to adopt more realistic ice particle shapes in simulating Tbs in the 1DVAR. However, it is a
challenging quest to determine the appropriate particle shapes to use for each snowstorm given the lack
of information on cloud microphysics. A potential solution might be to use a mixture of retrievals from
different ice habits and aggregates.
4.2.4. Effect of Two-Stream, One-Layer RTM
The RTM used in the 1DVAR for forward simulation is a two-stream, one-layer model [Yan et al., 2008]. While
bias correction is performed within the model, it is expected that there will be residual errors in the simulated
Tbs. In fact, the convergence thresholds for the differences between simulated and observed Tbs are a man-
ifestation of the uncertainty. Some analysis was performed to investigate the effect of employing the two-
stream, one-layer RTM on SFR retrievals. Figure 13 presents the nonconvergence rate for given convergence
thresholds at the five frequencies used in the RTM. The black circle marks the nonconvergence rate (~10%) of
the SFR algorithm based on the data set used, i.e., 90% of all detected snowfall is retrieved with 3 K or less bias
at 183 ± 7 GHz and 1.5 K or less at other channels. From Figure 10a, Tb bias at this level will cause �0.01 to
0.38 mm/h bias in SFR under light to intense snowfall. The nonconvergence rate decreases quickly with Tb
convergence thresholds and plateaus as the thresholds become large. For thresholds of 4 K for
183 ± 7 GHz and 3 K for other frequencies, the nonconvergence rate is about 4%. With these thresholds,
SFR bias ranges from about 0.1 mm/h to about 0.5 mm/h for light to intense snowfall (Figure 10a). To be con-
sistent with Figure 10a, the unlikely thresholds of 6.5 K and 10 K were applied to 183 ± 7 GHz and other fre-
quencies, respectively. Figure 13 shows that it results in a nonconvergence rate less than 0.5% and adds
0.34 mm/h to 0.88 mm/h bias to SFR retrievals depending on snowfall intensity. These results demonstrate
that the two-stream, one-layer RTM performs reasonably well at simulating Tbs at the five frequencies for
the snowfall data examined, and the residual Tb bias only lead to limited SFR bias.

Table 6. Mean ΔSFR*-to-SFR Ratio (%)a

SFR (mm/h) Range 0–1 1–2 2–3 3–4 4–5

Den = 500 kg/m3 �1.63 0.76 �0.37 �0.54 1.25
Den = 550 kg/m3 �0.82 0.07 �0.36 �0.26 0.30
Den = 650 kg/m3 0.66 0.29 �0.54 �0.78 0.10
Den = 700 kg/m3 0.69 0.88 �0.85 �0.86 �0.05

aThe same mass density is applied to the entire SFR algorithm.

Figure 10. ΔSFR from Tb perturbation at 165.5 GHz and 183.31 ± 7 GHz, (a) as absolution change and (b) as percentage change. The perturbation values are given in
the plots.
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4.2.5. Assumption About IWC Distribution
Since IWC profile is not known from the passive microwave measurements or the GFS model, IWC is
initially assumed to be uniformly distributed in cloud column to simplify the development of the SFR
equation (equation (10)). This assumption clearly underestimates SFR since IWC generally increases from the
upper portion to the lower portion of clouds. Therefore, the SFR algorithm is so designed that a bulk adjust-
ment is applied to equation (10) to compensate for the nonuniform IWC distribution (equations (11)–(13)).
The adjustment was derived from two sets of radar precipitation data: Stage IV (including gauge data)
and MRMS (section 3.2). It is noted that the adjustment for IWC is not limited to utilizing radar derived
snowfall rate data. However, the radar product, especially MRMS, is the optimal data to calibrate (and validate)
SFR. The adjustment derived from Stage IV is a constant which modifies the initial satellite retrievals
linearly (Figure 14). The adjustment from MRMS is a nonlinear function (equations (14) and (15)) and
leads to nonlinear adjustment of the initial satellite retrievals (Figure 14). In terms of IWC distribution,
the linear adjustment is equivalent to a constant ratio between the average IWC and the effective IWC,
IWCe (section 3.2). In contrast, the average IWC to IWCe ratio is a function of the initial SFR in the case
of nonlinear adjustment. The latter outperforms the linear adjustment possibly because it better captures
the distribution of IWC.

Table 7 lists the performance statistics of SFR before and after each adjustment. It is important to point
out that the adjustment, either linear or nonlinear, is an intrinsic part of the SFR algorithm to compensate
for the nonuniform distribution of IWC. The adjustment reduces the retrieval bias and RMS but has little
impact on the general structure of the retrieved SFR field within a snowstorm, which can be measured by

Figure 11. SFR retrievals versus collocated MRMS snowfall rate for four different ice habits: sphere, rosette, sector, and
dendrite.
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the correlation between SFR and MRMS precipitation data (used as “truth”). This statement is supported
by the constant correlation coefficient before and after adjustments given in Table 7. It demonstrates
that the correlation between SFR and MRMS is achieved from the 1DVAR-based algorithm rather than
from the adjustment for IWC. Table 7 shows that the adjustment significantly reduces the bias and
RMS introduced by the assumption about IWC distribution. The residual bias and RMS are a
combination of uncertainties caused by other assumptions made in the algorithm and individual IWC
adjustment deviates from the bulk adjustment. As mentioned above, the information on individual IWC
profile is not available from satellite or model especially in near real time.
4.2.6. Uncertainty From NPW Model
GFS model data are used in the SFR algorithm to derive cloud properties and ice particle fall velocity. This
means that some model uncertainty can propagate to the SFR algorithm. However, analyses indicate that
model bias does not cause significant error in the rate retrieval. For instance, a 10% increase in TPW only
results in 2.6% to 1.3% increase in SFR that ranges from 0 to 5 mm/h. For the same range of SFR, adding
1°C to the surface temperature leads to 1.3% to 0.1% change in SFR. GFS surface pressure and 2 m tempera-
ture and water vapor are used to derive air density and dynamic viscosity. Model errors in these variables

cause little change in the air pro-
perties hence minor influence on
SFR retrievals.

The error analyses in this section
show that the SFR algorithm includes
various uncertainty sources such as
the significant impact of ice particle
size distribution, moderate influence
from the assumption about ice parti-
cle shape, and the minor effect from
ice particle density and model errors.
Snowfall is the result of highly com-
plex and dynamic processes under
the influences of both the atmo-
sphere and the surface. Many of the

Figure 12. Scattering properties of various ice particles as function of liquid-equivalent particle diameter at 165.5 GHz
[from Kuo et al., 2016].

Figure 13. The 1DVAR nonconvergence rate as a function of Tb
convergence thresholds for 23.8, 31.4, 88.2, 165.5, and 183 ± 7 GHz.
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parameters involved in the physical
framework are not readily available
and have to rely on optimal and yet
feasible assumptions or be estimated
through statistical means. The valida-
tion study described in section 4.1 is
an overall evaluation of the algorithm
with all its uncertainties caused by the
various assumptions and approxi-
mations. The validation statistics in
Table 4 show that the SFR estimates
have high correlation (for passive
microwave snowfall rate product)
with radar snowfall rate, low bias,
and reasonable RMS.

5. Summary and Conclusions

A physically based, overland SFR algorithm has been developed for PMW radiometers AMSU-A/MHS pair
aboard the NOAA POES and EUMETSAT Metop satellites, and ATMS aboard the Suomi-NPP and future JPSS
satellites. The algorithm relies on a separate SD model [Kongoli et al., 2015] to detect snowfall. The SD model
is further enhanced with a set of NWPmodel-based filters. These filters, especially the cloud thickness thresh-
old, are very effective at removing false alarms in the SD model. The SFR algorithm is composed of four main
elements: cloud properties retrieval, computation of ice particle terminal velocity, IWC adjustment, and the
determination of snowfall rate. Cloud properties, Iw and De, are retrieved using a 1DVAR approach [Yan
et al., 2008] that uses a two-stream, one-layer RTM [Weng et al., 2001; Yan et al., 2008] as forward model to
simulate Tbs at several window and water vapor sounding channels. The model developed by Heymsfield
and Westbrook [2010] is adopted to calculate ice particle terminal velocity. The retrieved cloud properties
are used in the computation of the terminal velocity and IWC. The IWC is further modified with an adjusting
function that was derived from histogram matching SFR with radar precipitation data. Finally, SFR is deter-
mined from the modified IWC and ice particle terminal velocity. When the above steps are combined into
a single mathematical expression, SFR becomes a function of a complex integral (equation (10)) which can
only be solved numerically. This is realized using Romberg’s method.

The SFR product has been validated using both MRMS radar precipitation data [Zhang et al., 2016] and gauge
observations [Durre et al., 2013]. Three types of validation studies are presented: statistical analysis of collo-
cated satellite and radar instantaneous snowfall data from a collection of snowfall events, case study, and
comparison of SFR and gauge snowfall climatology. The results show that the SFR product and the radar
snowfall data correlate well with correlation coefficients above 0.5. In the case of the 2016 East Coast
Blizzard, the correlation coefficient between ATMS SFR and MRMS reaches 0.6. The study also reveals that
SFR has a dry bias compared to radar. This is likely caused by not taking into consideration the emission effect
of supercooled liquid water in the RTM. The climatology comparison shows that SFR has similar snow pat-
terns as gauge observations in most parts of CONUS except where shallow snowfall dominates especially
when it is accompanied with abundant supercooled cloud liquid water. This includes the snowbelt in the
Great Lakes region where lake effect snow dominates and some mountain ranges where shallow orographic

Figure 14. SFR after IWC-based adjustments versus before adjustments.

Table 7. SFR Performance Statistics Against MRMS Before and After Each IWC Adjustment

ATMS MHS

Correlation
Coefficient

Bias
(mm/h)

RMS
(mm/h)

Correlation
Coefficient

Bias
(mm/h)

RMS
(mm/h)

Before adjustment 0.55 �0.82 1.07 0.47 �0.76 0.99
After linear adjustment 0.55 �0.30 0.77 0.47 �0.33 0.75
After nonlinear
adjustment

0.55 �0.03 0.67 0.47 �0.03 0.74
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snowfall prevails. A major task being planned is to incorporate the effect of supercooled cloud liquid water in
the SFR algorithm. This will be accomplished by modifying the RTM and including cloud liquid water in the
control vector. The current version of the RTM only accounts for the effect of cloud ice. Including liquid water
effect in the RTM is expected to improve the performance of the SFR algorithm in the future. Finally, a set of
error analyses were carried out to examine the uncertainties introduced by the various assumptions made in
the SFR algorithm. The analyses revealed that the uncertainty sources range from significant impact from ice
particle size distribution, moderate influence from ice particle shape, and minor effect from ice particle
density and NWP model errors, etc.
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